Literature Cited

- Laba, V. I.; Kron, A. A.; Prilezhayeva, E. N. Izv. Akad. Nauk SSSR, Ser. Khim. 1976, No. 7, 1546.
- (2) Killian, D. B.; Hennion, G. F., Nieuwland, J. A. J. Am. Chem. Soc. 1934. 56. 1384
- Nazarov, I. N.; Makin, S. M.; Krouptsov, B. K.; Mironov, V. A. Zh. Obshch. Khim. 1959, 29, 106. Rozhkov, I. N.; Makin, S. M. Zh. Obshch. Khim. 1964, 34, 59. (3)
- (5) Bunina-Krivorukova, L. I.; Petrov, A. A. Zh. Obshch. Khim. 1963, 33,
- (6) Nazarov, I. N.; Gusev, B. P.; Gunar, V. I. Zh. Obshch. Khim. 1958, 28, 1444.
- (7) Sancy, G.; Marbet, R. Helv, Chim. Acta 1967, 50, 1158.
- Shnaidman, L. O. Prolzvodstvo Vitaminov; Khimia: Moscow, 1973; p (8) 437
- (9) Serpinsky, V. V.; Voitkevich, S. A.; Luboshic, N. Yu. Zh. Fiz. Khim. 1957, 31, 1278.
- (10) Dreisbach, R. R.; Martin, K. A. Ind. Eng. Chem. 1949, 41, 2875.
- (11) Waradzin, W.; Skubla, P. Chem. Prum. 1973, 23, 556
- (12) Safo, K.; Kurihara, J.; Abe, S. J. Org. Chem. 1963, 28, 45
- (13) Gadzhiyev, S. N.; Kerimov, K. K.; Goubareva, A. I.; Beregovykh, V. V.; Ignatiyev, V. L.; Nurullayev, G. G. Khim.-Farm. Zh. 1982, 16, 1131. (14) Maurit, M. E.; Smirnova, G. V.; Parleonov, E. A.; Sarycheva, I. K.; Preobrazhensky, N. A. Doki. Akad. Nauk SSSR 1961, 140, 1330.
- (15)Weichet, J.; Hodrova, J.; Kvita, V. Chem. Listy 1957, 51, 568.
- (16) Demole, E. Compt. Rend. 1958, 243, 1883.
 (17) Arnold, L.; Pasedach, H.; Pommer, H. German Patent 1 793 037, 1968.
- (18) Baudoin, M.; Perron, R. French Patent 2 327 980, 1975.
- Souvorov, L. V. Termodynamika Gasovogo Sostoyaniya; Khimia: Len-(19) ingrad, 1970; p 230.
- (20) Baglay, A. K.; Gurarly, L. L.; Kuleshov, G. G. Khim.-Farm. Zh. 1984, 18, 1013.
- (21) Adamson, A. Physical Chemistry of Surfaces; Mir: Moscow, 1979; p 568.
- (22) Beregovykh, V. V.; Gurariy, L. L.; Belousov, V. P. Khim .- Farm. Zh. 1986, 20, 1146.

- (23) Spravochnik Khimika; Nikolskiy, B. P., Ed.; Khimia: Moscow, 1966; Vol. I, p 1071
- (24) Vasiliev, I. A.; Petrov, V. M. Termodynamicheskiye Svoistva Kislorodsoderzhashchikh Organicheskikh Soyedineniy, Khimia: Leningrad, 1984; p 320.
- (25) Filippov, L. P. Issledovaniye Teploprovodnosti Zhidkostey; Moscow State University: Moscow, 1970; p 286.
- (26) Rastorguyev, Yu. L.; Geller, V. Z. Inzh.-Fiz. Zh. 1967, 13, 17.
 (27) Beregovykh, V. V., Geller, V. Z.; Kuleshov, G. G. Khim.-Farm. Zh. (27) 1985, 19, 1517.
- Vargaftik, N. B. Tepiofizicheskiye Svoistva Zhidkostey i Gasov; Nauka: (28)Moscow, 1972; p 720.
- (29) Kratkly Khimicheskiy Spravochnik; Rabinovich, V. A., Ed.; Khimia: Leningrad, 1978; p 392.
- (30) Kratkly Spravochnik Fiziko-Khimicheskikh Velichin; Mishchenko K. P., Ravdel, A. A., Eds.; Khimia: Leningrad, 1967; p 184
- (31) Mustafayev, R. A. Teplofisicheskiye Svoistva Uglevodorodov pri
- (31) Mustatayev, R. A. Tepiorischeskiye Svoistva Uglevoaoroadv pri Vysokikh Parametrakh Sostoyaniya; Energiya: Moscow, 1969; p 324.
 (32) Filippov, L. P. In Obzory po Tepiofizicheskim Svoistvam Veshchestv; AN SSSR: Moscow, 1977; No. 2, pp 1–108.
 (33) Collerson, R. R. J. Chem. Soc. 1965, 3697.
- Ambrose, D. J. Appl. Chem. Biotechnol. 1974, 24, p 359. (34)
- (35)
- Hales, J. L. Trans. Faraday Soc. **1967**, 63, 1876. Markovnik, V. A. Termodinamika Organicheskikh Soyedineniy; N. I. Lobachevski State University Gorkij, 1979; No. 8, p 107. Nazarov, I. N. Zh. Obshch. Khim. **1959**, 29, p 3683. (36)
- (38)
- (39)
- Timmermans, J. J. Chem. Phys. **1932**, 29, (10), 529. Fernandez, J. E. Chem. Rev. **1962**, 62, 485. Martynenko, V. I. Funkzionalnyje Organicheskiye Soyedineniya i (40)Polimery; Polytechnical Institute: Volgograd, 1975; p 296.

Received for review October 26, 1987. Revised May 13, 1988. Accepted June 28, 1988. We express our thanks to the Organizing Committee of the First International Forum Formulation Physical Chemistry and Applications for interest in our work.

Phase Systems Melamine $-H_3PO_4-H_2O$ and Melamine-NH₃-H₃PO₄-H₂O at 25 $^{\circ}$ C

A. William Frazier,* Kjell R. Waerstad, and Yong K. Kim

Division of Research, National Fertilizer Development Center, Tennessee Valley Authority, Muscle Shoals, Alabama 35660

The C₃H₆N₆-H₃PO₄-H₂O and C₃H₆N₆-NH₃-H₃PO₄-H₂O phase systems were determined from 0 to 50% P₂O₅ at 25 °C. Eleven adducts between melamine and H₃PO₄/NH₄H₂PO₄ were isolated, identified, and characterized crystallographically. Below 10% P2O5, the solubility of melamine in these systems was less than 0.3%. Above 30% P2O5, the solubility of melamine ranged up to about 8%. The results indicate that the precipitation of melamine-phosphoric acid adducts, especially C₃H₄N₆·H₃PO₄, provides a practical process for purifying wet-process phosphoric acid.

Melamine (C₃H₆N₆, eq 1) readily forms insoluble adducts with many organic and inorganic acids (1, 2) and has been proposed as a purification and collection agent in many acid reclamation processes (3-7). Melamine also has been proposed

$$NH_{2} \qquad NH_{2} \qquad (1)$$

as an agent for producing linear and cyclic polyphosphate compounds (8). Since the stability of impure wet-process phosphoric acid (WPA) and liquid fertilizers prepared from this acid is limited by dissolved impurities, particularly magnesium [which has a very low saturation composition in fluid fertilizers (9)], it seemed feasible that a purification scheme could be developed using melamine.

Thus, a recently developed process (3, 4) has been proposed for this purpose. The process consists of precipitating acidic melamine phosphates from phosphoric acid solutions and subsequently recovering the melamine in aqueous ammonium hydroxide/phosphate solutions. This reclamation process traverses the phase system C3H6N6-NH3-H3PO4-H2O from highly acidic to weakly basic conditions. Phase chemistry data are not available to describe the chemical properties and compositions of the reaction products that will be encountered by the interaction of these materials. A few of the adducts have been encountered, but the characterization data to distinguish them are not available (10-12).

Experimental Section

To understand the melamine precipitation and regeneration process for the purification of WPA (3, 13), a major research study was conducted to characterize the chemical and physical properties of the equilibrating solids in the systems C₃H₆N₆- $H_3PO_4-H_2O$ and $C_3H_6N_6-NH_3-H_3PO_4-H_2O$ at 25 °C.

Early in the study it became apparent that numerous unknown materials would be encountered (1-3). Thus, the initial task was to synthesize and characterize homogeneous samples of each melamine-phosphoric acid adduct. For this phase of the study, a strong reagent-grade H_3PO_4 solution (60% P_2O_5)

Table	I.	Chemical	Analysis	of	Solid	Phases
-------	----	----------	----------	----	-------	--------

		wt %		mol/mol of PO ₄				
sample no.	Mel-N	NH3-N	P_2O_5	H_2O^a	melamine	H ₂ O	NH ₃	
1	42.3		17.4	12.53	2.06	2.84		
Mel ₂ ·H ₃ PO ₄ ·3H ₂ O	41.58		17.57	13.57	2.00	3.00		
1	40.7	0.6	20.6	10.52	1.643	2.01	nil	
2	40.2		20.4	11.54	1.666	2.231		
$Mel_{5} \cdot (H_{3}PO_{4})_{3} \cdot 6H_{2}O$	40.70	0	20.64	10.47	1.667	2.00		
1	38.8		21.9	11.56	1.497	2.028		
2	38.9		22.0	11.28	1.494	2.022		
$Mel_{3} (H_{3}PO_{4})_{2} 4H_{2}O$	39.01		21.98	11.15	1.500	2.00		
1	39.4		25.0	6.39	1.332	1.008		
2	39.1		24.9	6.98	1.327	1.106		
Mel ₄ ·(H ₃ PO ₄) ₃ ·3H ₂ O	39.44		25.00	6.34	1.333	1.00		
1	38.2		27.0	5.43	1.196	0.793		
2	38.1		26.7	6.00	1.206	0.887		
$Mel_{6} (H_{3}PO_{4})_{5} 4H_{2}O$	38.24		26.93	5.46	1.20	0.80		
1	37.3		31.6	0.43	0.998	0.008		
2	37.3		31.7	0.10	1.000	0.002		
Mel·H ₃ PO ₄	37.50		31.70	0.00	1.000	0.00		
1	27.2		42.3	0.81	0.505	0.07		
2	24.2		44.5	2.28	0.460	0.202		
$Mel \cdot (H_3PO_4)_2$, A	26.09		44.10	0.00	0.500	0.00		
1	24.5		43.5	3.21	0.477	0.290		
2	24.8		43.4	2.76	0.482	0.250		
$Mel \cdot (H_3PO_4)_2, B$	26.09		44.10	0.00	0.500	0.00		
1	19.5		30.9	28.1	0.533	3.59		
$Mel \cdot (H_3PO_4)_2 \cdot 6H_2O$	19.53		33.02	25.12	0.500	3.00		
1	16.2		52.65	16.38	0.26	0.91		
$Mel \cdot (H_3PO_4)_4$	16.22		54.83	0.00	0.25	0.00		
1	30.6	4.8	25.5	11.63	1.014	1.77	0.954	
2	30.5	4.8	25.3	13.47	1.019	2.10	0.961	
Mel·NH4H2PO4·2H2O	30.77	5.13	26.01	13.19	1.00	2.00	1.00	
ydrated H ₂ O.								

```
able II Ontical D
```

Table II. O	ptical	Data
-------------	--------	------

compound	crystal system, class, and habit	refractive indices	optical properties
Mel ₂ ·H ₃ PO ₄ ·3H ₂ O	triclinic, 1; (010) plate crystals elongated along a and modified by {011} and {101}; twins on (001) with perfect cleavage parallel to (100)	$\alpha = 1.456; \beta = 1.707;$ $\gamma = 1.738$	biaxial (-), $2V = 34^\circ$; OAP almost \perp (010) with $X' \sim X \land a = 18^\circ$ in obtuse β , $\angle \beta = 109^\circ$; $Z' \sim Z \land b =$ 3° in acute γ ; $d = 1.62$
Mel ₅ •(H ₃ PO ₄) ₃ •6H ₂ O	orthorhombic, mmm ; plate crystals tabular on $X-Z$ plane and exhibiting (100), (010), and (001) perfect cleavage along both directions of tabular plane	$\alpha = 1.458; \beta = 1.696;$ $\gamma = 1.730$	biaxial (-), 2V = 37°; OAP = tabular plane; d _{calcd} = 1.63
$\mathrm{Mel}_{3^{*}}(\mathrm{H}_{3}\mathrm{PO}_{4})_{2^{*}}4\mathrm{H}_{2}\mathrm{O}$	monoclinic, 2/m; prismatic crystals, tabular on 010 and exhibiting (100), (010), and {011}	$\alpha = 1.460; \beta = 1.683;$ $\gamma = 1.716$	biaxial (-), $2V = 38^{\circ}$; OAP \perp (010), X $\land c = 9^{\circ}$ in acute β , $\beta = 117^{\circ}$; d = 1.63
$Mel_4 \cdot (H_3PO_4)_3 \cdot 3H_2O$	orthorhombic, mmm ; sealer crystals, tabular on $X-Z$ plane	$\alpha = 1.465; \beta = 1.707;$ $\gamma = 1.727$	biaxial (-), 2V = 28°; OAP = tabular plane; d _{celed} = 1.68
$Mel_{6} \cdot (H_3PO_4)_5 \cdot 4H_2O$	monoclinic, $2/m$; plate crystals tabular on (010), elongated along c and modified by {111}, {110}, {101}, and (100)	$\alpha = 1.460; \beta = 1.697;$ $\gamma = 1.723$	biaxial (-), $2V = 33^{\circ}$; OAP = (010), $Y = b$; $X \land c = 28^{\circ}$ in obtuse β , $\beta = 91^{\circ}$; weak disp., $r < V$, $d = 1.69$
Mel·H ₃ PO ₄	triclinic, 1, (110) plate crystals elongated along c, modified by (010) and (100); twins on (110)	$\alpha = 1.442; \beta = 1.690;$ $\gamma = 1.741$	biaxial (-), $2V = 43^{\circ}$; OAP = (010), $Y' \sim Y = b, \beta = 126^{\circ}; d = 1.72; Z \land c = 46^{\circ}$ in acute β
Mel·(H ₃ PO ₄) ₂ , A	monoclinic, 2/m; (010) tablets slightly elongated along c and terminated by (100) and (001)	$\alpha = 1.436; \beta = 1.596;$ $\gamma = 1.691$	biaxial (-), $2V = 69^{\circ}$; $\beta = 119^{\circ}$, OAP = (010); $d = 1.79$
$Mel \cdot (H_3PO_4)_2, B$	orthorhombic, <i>mmm</i> ; rectangular plates elongated along X and modified by (100), (001), and (010)	$\alpha = 1.551; \beta = 1.591;$ $\gamma = 1.616$	biaxial (-), $2V = 75^\circ$; OAP and $X \perp$ tabular plane; $d_{celed} = 1.84$
$Mel \cdot (H_3PO_4)_2 \cdot 6H_2O$	orthorhombic, mmm; plate crystals tabular on Y-Z plane	$\alpha = 1.470; \beta = 1.588;$ $\gamma = 1.637$	biaxial (-), $2V = 61^{\circ}$; OAP and $X \perp$ tabular plane; $d_{orled} = 1.72$
$Mel \cdot (H_3PO_4)_4$	monoclinic, $2/m$; highly modified prisms	$\alpha = 1.448; \beta = 1.595;$ $\gamma = 1.609$	biaxial (-); OAP = (010); $d_{calcd} = 1.91$
Mel·NH4H2PO4·2H2O	triclinic, 1; (010) plate crystals elongated along c and modified by (100), (001), (101), and (101)	$\alpha = 1.469; \beta = 1.652;$ $\gamma = 1.670$	biaxial (-), $2V = 32^{\circ}$; OAP ~ (010), X $\land c = 17^{\circ}$ in acute β , $\beta = 107^{\circ}$; $d_{calcd} = 1.94$

Table III. Unit-Cell Data for Melamine Phosphates

contents of unit cell	crystal system	space group	<i>a</i> ₀	b ₀	lattice con c ₀	stants α	β	<u>γ</u>	calcd density, g/cm ³
$\begin{array}{c} 2[C_{3}H_{6}N_{6}\cdot H_{3}PO_{4}] \\ 4[C_{3}H_{6}N_{6}\cdot (H_{3}PO_{4})_{2}-A] \\ 2[(C_{3}H_{6}N_{6})_{2}\cdot H_{3}PO_{4}\cdot 3H_{2}O] \\ 4[(C_{3}H_{6}N_{6})_{6}\cdot (H_{3}PO_{4})_{5}\cdot 4H_{2}O] \\ 2[C_{3}H_{6}N_{6}\cdot NH_{4}H_{2}PO_{4}\cdot 2H_{2}O] \end{array}$	triclinic monoclinic triclinic monoclinic triclinic	$\begin{array}{c} P1 \text{ or } P\overline{1} \\ P \ 2/a \\ P1 \text{ or } P\overline{1} \\ B2, Bm, \text{ or } B \ 2/m \\ P1 \text{ or } P\overline{1} \end{array}$	$\begin{array}{r} 9.343 \\ 16.722 \\ 10.671 \\ 21.777 \\ 6.815 \end{array}$	$10.220 \\ 8.033 \\ 12.539 \\ 20.957 \\ 14.080$	4.578 4.572 6.781 11.279 6.339	89.9 90.0 105.7 90.0 100.7	93.8 100.5 108.7 90.1 107.3	83.7 90.0 78.9 90.0 91.2	$1.717 \\ 1.771 \\ 1.634 \\ 1.701 \\ 1.617$

Table IV.	X-ray	Powde	er Diff	raction	Data	of	Melamine	Phospha	tesª
0		0					0		

dobrd, Å	d _{celed} , Å	hkl	I/I_0	dobed, Å	d _{caled} , Å	hkl	I/I_0	dobed, Å	dalad, Å	hkl	I/I_0	dahed, Å	danladı Å	hkl	I/I_0
0080	ualtu,		, ,	Ubad.	Calcu,		Mel ₂ H	PO ₄ ·3H ₂ O			-7-0	00803	- careu,		-/-0
11.95	11.989	010	3	4.448	4.449	210	1	3.134	3.135	$22\bar{2}$	6	2.323	2.321	$\bar{3}31$	2
10.02	10.037	100	2	4.097	4.089	220	1		(3.078	320)		2.244	2.246	$15\overline{2}$	3
8.17	8.178	110	1	3.994	3.996	030	2	3.073	3.071	$02\bar{2}$	17	2.173	2.171	233	1
7.28	7.291	110	22	3.958	3.956	211	3		3.071	141 J		2.156	2.156	412	2
6.26	16.271	111	. 14	3.915	3.915	131	10	2.968	2.968	140	4		2.156	203J	
6 1 4	(6.257	001)	16	3.870	3.871	130	2	2.956	12.963	230	3	2.087	2.088	051	2
5.09	5.005	011	10	3.782	3.119	121	37	0.906	0.905	112)	14	2.046	2.045	243	1
5.30	5 432	120	34	3.044	3.040	440 191	é	2.090	2.090	101 010)	14	2.020	2.020	213	4
5 10	5 104	121	1	3 384	(3.391	112)	7	2.100	2.787	320	10	1.936	1.900	260	1
5.02	5.019	200	18	0.001	13.377	301	•	2.682	2.682	321	5	1.785	1.785	053	3
4.92	4.922	ī 11	16	3.327	3.324	310	15	2.553	2.552	$24\overline{2}$	2	1.713	(1.716	530)	3
4.83	4.834	210	2	3.263	(3.263	10Ī)	16	2.515	2.515	410	3		1.710	503	3
4.75	4.756	$21\overline{1}$	4		3.263	12 2 ∫		2.418	2.417	420	13	1.702	1.702	213	2
4.74	4.738	101	3	3.215	3.216	$21\bar{2}$	100	2.392	2.396	150	2	1.607	1.607	$\bar{5}32$	3
4.618	4.608	201	7												
						N	lel ₆ (H ₃	PO₄)₅•4H₂O							
10.01	10.007	101	2	4.385	4.388	032	1		3.215	$\bar{2}52$		2.379	∫ 2.379	713)	2
9.64	9.662	210	2	4.297	4.294	430	13	3.182	3.183	323	13		2.378 (<u>4</u> 72∫	
9.03	∮9.04 3	111	5	4.065	4.066	501	5	3.146	3.139	442	5	2.359	2.359	434	1
	(9.030	111)	-	3.996	3.991	511	11	3.027	3.026	143	5	2.269	2.269	733	1
7.24	17.243	121	2	3.912	13.913	402	2	2.986	2.984	640	7	2.212	2.212	614	3
5 96	(5.966	121)	c	0 040	2 9 4 6	200)	10	2.800	2.864	262 200	5	2.180	2.180	624 564)	I E
0.00	15.855	311	. 0	3.040	3.786	412 591	12	2.601	2.199	004 599	ა 1	2.102	2.152	204	Э
5 72	5 728	131	<1	3 711	3 706	103	14	2.642	(2.644)	072)	5		(2.101	145	
5.64	5.640	002	<1	3.655	3.650	Ī13	12	2.012	2.640	224	, v	2.062	2.062	383	2
5.44	5.444	400	10	3.516	3.514	531	25	2.619	2.620	080 j	6		2.062	573	-
5.24	5.239	040	100	3.491	3.492	123	51		2.615	034	•	1.961	1.961	$\bar{8}04$	3
5.02	∫5.034	330)	2	3.415	3.414	432	5	2.544	2.544	$\overline{2}34$	3	1.854	1.853	$\bar{2}06$	1
	\ 5.012	<u>2</u> 02∫		3.336	3.336	303	44	2.536	∫2.536	-830 <u>)</u>	1		(1.668	606)	
4.96	4.966	022	1	3.296	3.298	161	43		2.534	181)	_	1.666	1.666	575	5
4.65	4.643	141	4	0.010	(3.294	313)	-	2.512	2.517	660 ā.(.)	2		(1.665	616J	
4.527	4.521	222	3	3.218	3.221	630	5	2.422	2.422	244	4				
							Mel	∙H₃PO₄							
10.14	10.157	010	15	3.392	3.386	030	31	2.511	2.513	131	2	2.020	2.019	430	2
9.25	9.265	100	12	3.361	3.368	$20\overline{1}$	33	2.469	2.465	311	3	2.006	<i>§</i> 2.012	<u>4</u> 01)	5
7.25	7.257	110	69	3.305	3.309	121	8	2.443	2.435	$32\overline{1}$	6		1.999	331J	
6.49	6.496	110	3	3.173	3.180	121	10	2.421	2.419	330	3	1.944	1.941	250	4
5.08 4.679	5.079	120	15	3.130	3.129	211	5	2.359	2.360	311	8	1.913	1.917	331	3
4.073	4.077	200	07 59	3.064	3.000	1300	20	2.042	2.009	240 019	7	1.804	11.000	5001	4
4.034	4.002	200	91	2 940	2 939	310	25	2.208	2.200	112	á	1 812	1 811	491	3
4 262	4.259	120	58	2.540	2.869	310	16	2.136	2.136	112 141	11	1.792	1.791	350	1
4.197	(4.211	Ī01)	3	2.746	2.733	031	8	2.119	2.119	$1\bar{1}2$	3	1.777	1.775	251	1
	4.181	011)		2.697	2.694	$13\bar{1}$	6	2.073	2.073	$12\bar{2}$	2	1.710	(1.713	441)	4
4.140	4.150	01Ī	5	2.646	2.643	$30\overline{1}$	10	2.046	∫2.047	122)	2		1.707	530∫	
4.005	3.991	101	11	2.617	2.615	$31\overline{1}$	2		2.045 (<u>2</u> 12∫		1.658	∫1.660	441)	4
3.969	3.948	111	6	2.561	2.582	221	3	2.036	2.032	122	2		1.658	431)	_
3.663	3.645	111	100	2.543	2.539	040	7	2.029	2.031	421	2	1.561	1.559	261	3
3.633	3.629	220	99												
	·					M	el·(H ₃ P	O ₄) ₂ , Form A			-				
8.18	8.221	200	19	3.050	3.043	510	9	2.348	2.343	511	3	1.915	1.915	630	2
8.02	8.033	010	95	3.001	3.012	121	. 14	2.276	2.276	202	5	1.892	1.891	422	2
4.50	4.553	101	19	0.005	(2.995 2.021	021)	10	2.259	2.264	020 191	2	1.851	1.849	000	1
4.027 1 099	4.027 1017	050	00 00	2.930 9 Q90	2.931 9 090	221 501	10	2.201 9.145	2.20U	319) TOT	1 1	1.041	1.043	222 500	1
3 997	3 002	011	90 91	2.520	2.920	301	10	2.140	12.140	409	. 1	1.010	1.017	941	4
3.837	3.836	301	100	2.746	2.744	511	7	2.080	2.076	202	1	1.705	1.702	241 441	3
3.690	3.685	111	3	2.718	2.710	221	10	2.032	2.037	502	1	1.677	1.678	512	ĭ
3.660	3.659	410	2	2.649	2.643	130	8	2.014	2.008	212	2	1.656	1.655	$54\overline{1}$	$\overline{2}$
3.617	3.609	220	24	2.552	2.556	6 0Ī	3	1.989	1.993	140	4	1.644	1.640	232	3
3.460	3.462	31Ī	3	2.508	2.503	321	2	1.984	1.985	$12\overline{2}$	4	1.581	1.580	332	3
3.349	{3.354	401)	15	2.437	2.436	611	11	1.955	∫1.958	302)	3	1.474	1.474	641	2
0.000	(3.340	211)	-	2.410	2.406	330	2	1 010	(1.951	240J	•	1.410	1.408	551	1
3.098	3.095	411	Ð	2.365	2.362	521	Э	1.919	1.918	602	3	1.406	1.407	213	2
	A A	<u> </u>				M	lel∙NH4	H ₂ PO ₄ ·2H ₂ O							
6.92	6.899	020	85	4.931	4.926	120	17	3.972	3.968	121	12	3.234	3.234	211	22
6.08 5.04	5.060	110	15	4.728	4.733	111	20	3.902	3.902	130	15	3.193	3.191	211 740	18
5.94	0.929 5.605	110	04 10	4.000 1.110	4.097 1 191	∪3U 19ī	5	3 639	3 630	131 191	21 95	3.140	3.101 (3.117	140 113)	5
5.08	5.089	011	15	4.120	4.107	021	4	3.453	3.448	040	68	0.107	3.101	210	U
5.01	5.021	021	9	4.028	4.047	031	5	3.303	3.303	$20\overline{1}$	100	3.032	3.032	220	11

Table IV (Continued)

d_{obsd} , Å	d_{caled} , Å	hkl	I/I_0	$d_{\mathrm{obsd}},\mathrm{\AA}$	$d_{ ext{calcd}}$, Å	hkl	I/I_0	d_{obsd} , Å	$d_{\text{calcd}},$ Å	hkl	I/I_0	d _{obsd} , Å	$d_{\mathrm{calcd}},\mathrm{\AA}$	hkl	I/I_0
2.997	3.006	$12\overline{2}$	14	2.392	2.399	$23\overline{2}$	4	1.986	1.984	$\bar{2}42$	3	1.699	1.700	333	4
2.940	2.945	$\bar{2}21$	6	2.380	2.377	Ī 32	2	1.973	1.976	003	2	1.669	1.669	152	2
2.823	2.823	141	5	2.342	2.344	$1\bar{3}2$	25	1.930	∫ 1.936	2 2 2)	2	1.650	1.649	$\overline{1}43$	7
2.762	2.758	050	18	2.302	2.305	$06\overline{1}$	3		1.927	233∫		1.618	∫ 1.619	123)	3
2.726	2.721	$23\overline{1}$	16	2.206	2.206	$2\overline{4}1$	7	1.916	1.915	202	1		1.617	422ً∫	
2.650	2.647	$\bar{1}22$	6	2.128	2.123	$\bar{1}42$	6	1.905	1.904	013	2	1.614	1.614	243	2
2.618	2.615	$\bar{1}50$	14	2.120	2.114	160	5	1.862	1.861	$\bar{2}61$	3	1.574	1.576	$11\overline{4}$	2
2.558	∫ 2.563	211)	3	2.107	2.110	310	4	1.834	∫1.835	262 L	6	1.522	1.523	$2\bar{2}3$	2
	2.555	230∫		2.072	2.072	$31\bar{2}$	5		1.833	161∫		1.500	1.501	312	2
2.502	2.504	$2\overline{2}1$	8	2.025	∫2.027	33Ī (5	1.816	1.816	$2\overline{4}2$	2	1.498	1.499	403	3
2.446	2.445	$1\overline{2}2$	12		2.024	Ī61∫		1.783	1.785	$05\bar{3}$	3	1.480	1.482	004	2
2.423	2.421	$24\overline{1}$	7												

^a Copper K α radiation, $\lambda = 1.54178$ Å; silicon powder (NBS No. 640), $a_0 = 5.43088$ Å, used as internal calibration standard. d_{obsd} is the observed d spacing; d_{calcd} is calculated from single-crystal data.

Figure 1. System C₃H₆N₆-H₃PO₄-H₂O at 25 °C.

Figure 2. System C₃H₆N₆-H₃PO₄-H₂O at 25 °C.

was concentrated to about 70 % P_2O_5 and then saturated with a high-grade melamine product. The melamine reagent was homogeneous and well crystallized and possessed the optical and X-ray properties for pure melamine (14). The saturating melamine-phosphoric acid adduct in this concentrated acid solution was very soluble, and the crystals could be developed into coarse, euhedral units by standard crystal-growing technlques.

After separation, the unique crystalline phase was characterized chemically and crystallographically (optical microscopy

Figure 3. Phase system C₃H₆N₆-NH₃-H₃PO₄-H₂O at 25 °C.

and X-ray diffraction) for future identification. As increasing quantities of melamine were charged to the slurry, the total H_3PO_4 in solution decreased and the stable solid phases changed either to other crystalline materials having a higher ratio melamine: H_3PO_4 or to another dimorphic form. In turn, each new phase was grown as coarse crystals and isolated for characterization.

During this phase of the study, a slurry sample representing the invariant points (two phases) and an occasional univariant point representing a tie-line composition were set aside for equilibration. These samples were eventually analyzed and used to obtain the saturation isotherms at 25 °C for the $C_3H_8N_8$ - H_3PO_4 - H_2O phase system.

Another sample of concentrated H_3PO_4 was saturated with $NH_4H_2PO_4$ and melamine until the acidic adduct $C_3H_6N_6$ · H_3PO_4 was a stable solid phase. This slurry then was ammoniated (while being monitored by optical microscopy methods) to obtain slurry samples containing two or three solid phases representing the tie-line and invariant point composition for the system $C_3H_6N_6-NH_3-H_3PO_4-H_2O$ at 25 °C. Two new crystalline components were encountered in this study that were not present in the ammonia-free system. As before, these components were isolated for characterization.

The results of the solid-phase analysis are given in Table I. The more acidic adducts having a ratio H_3PO_4 :melamine equal to or greater than 2 were stable in very viscous solutions above $50\% P_2O_5$ at 6-8% melamine. These solutions were difficult to equilibrate and this region of the phase system was not

Table V. X-ray Powder Diffraction Data of Melamine Phosphates^a

d, Å	I/I_0	<i>d</i> , Å	I/I_0	d, Å	I/I_0	d, Å	I/I_0	
		(Me	el) ₅ (H ₃]	PO ₄) ₃ .6H ₂ O				
10.50	16	4.301	1	3.004	3	2.367	2	
8.10	6	4.008	6	2.957	4	2.324	3	
7.17	25	3.782	9 14	2.870	ð	2.213	5	
6.13	20 4	3.513	27	2.765	7	1.850	2	
5.27	86	3.376	5	2.650	4	1.625	2	
4.92	14	3.214	100	2.631	5	1.617	1	
4.450	8	3.171	12	2.502	4	1.605	2	
4.428	8							
		(Me	el) _a (H _a]	PO₄) ₂ ,4H ₂ O	ł			
10.77	3	4.266	10	2.954	5	2.182	1	
10.18	4	3.960	19	2.920	1	2.154	3	
8.93	16	3.813	3	2.906	1	2.136	2	
5.12 5.84	1	3.760	37	2.718	1	2.025	1	
5.57	6	3.615	9	2.660	3	1.975	2	
5.42	35	3.565	2	2.600	6	1.902	2	
5.30	8	3.501	11	2.536	4	1.877	2	
5.18	3	3.408	2	2.505	1	1.873	1	
5.09	1	3.248	100	2.445	2	1.803	3	
4.99	19	3.102	0 9	2.382	1	1.690	2 9	
4.676	3	3.066	1	2.245	2	1.544	1	
4.486	2	2.992	9	2.210	-	1.011	•	
		(M.	ւս ու լ					
10.25	5	4 582	1)4(H 3	3 260	25	2 2 2 8	1	
8.86	3	4.467	9	3.220	11	2.296	2	
8.40	4	4.311	9	3.166	55	2.280	1	
8.01	2	4.160	3	3.132	2	2.170	3	
7.26	6	4.096	4	3.059	8	2.118	1	
6.51	3	3.910	2	2.870	5	2.084	4	
6.32	4	3.864	10	2.785	1	2.049	3	
5.62	8	3.680	2	2.671	4	1.993	1	
5.36	3	3.574	$\tilde{6}$	2.565	6	1.778	1	
5.13	100	3.492	1	2.531	2	1.729	1	
4.91	7	3.424	48	2.484	1	1.630	2	
4.87	6	3.351	12					
		Mel	(H ₃ PO	4) ₂ , Form E	3			
10.06	4	3.956	100	2.776	3	1.970	3	
8.00	75	3.840	41	2.743	3	1.923	3	
7.92	92	3.746	12	2.720	10	1.862	4	
7.48	2	3,615	о 10	2.640	6	1.841	5	
7.10	1	3.565	43	2.573	2	1.774	3	
6.60	2	3.506	26	2.517	5	1.753	2	
6.20	1	3.349	9	2.439	4	1.723	3	
5.52	2	3.310	4	2.415	4	1.697	1	
5.31	19	3.207	13	2.369	3	1.685	2	
4.91	37	3.075	19	2.347	4	1.603	3	
4.491	50	3.017	8	2.248	4	1.553	2	
4.412	3	3.002	9	2.205	5	1.492	2	
4.265	2	2.994	11	2.113	1	1.473	2	
4.090	2	2.846	3	2.042	2	1.407	3	
4.018	56	2.812	6	2.010	9	1.330	3	
		М	el(H ₃ P	$O_4)_2 - 6H_2O$				
10.07	29	4.478	5	3.30 9	31	2.374	3	
9.21	3	4.250	10	3.249	9	2.350	6	
8.06	10	4.206	9 24	3.207	3	2.296	2	
7.55	7	4.035	22	3.076	46	2.246	3	
7.26	6	3.946	8	3.034	3	2.138	š	
6.78	3	3.868	85	2.933	4	2.127	5	
6.62	6	3.768	9	2.880	18	2.044	3	
6.20	9	3.746	25	2.770	7	2.008	9	
0.07 5.54	8 19	3.696 3.696	27 15	2.743	14 19	1.719	2	
5.32	23	3.571	100	2.655	5	1.602	1	
5.21	4	3.513	2	2.616	3	1.595	2	
5.047	7	3.457	9	2.599	1	1.557	3	
4.720	8	3.391	12	2.564	6	1.373	2	
4.032 4.594	13	3.304	ð	2.026	Э	1.331	T	

 a Copper K α radiation, λ = 1.54178 Å; spinel (MgAl_2O_4), a_0 = 8.0831 Å, used as internal calibration standard.

studied; however, suitable preparations of these adducts were obtained for characterization. A major factor also complicating the study of this region was the rapid condensation of melamine to cyanuric acid and ammonia, especially at elevated temperature. Hydrolysis with the formation of ammonia and CO_2 also occurred at higher pH values, but was much slower. It is suggested that the hydrolysis rates for ammonia formation will be desired when practical application of the melamine-phosphoric acid processes is established.

The new adducts were characterized optically by polarizing light microscopy and by X-ray powder diffraction. Single-crystal data were determined for five of the adducts. The observed X-ray diffraction reflections were corrected by using silicon powder (NBS No. 640) or spinel as internal standards. The intensities were measured as peak heights above background and are expressed as percentages of the strongest line. Unit-cell parameters were determined from Weissenberg and precession photographs and were refined from the indexed powder diffraction patterns by least-squares computations. Because of the hygroscopic nature of C₃H₆N₆•4H₃PO₄, its X-ray powder data were not obtained. The other adducts were relatively stable on exposure at ambient condition. The crystal data, as obtained by polarizing light microscopy (PLM), are given in Table II. The single-crystal data for five of the adducts are given in Table III; these data allow for calculations of the hkl spacings for the X-ray powder diffraction data given in Table IV. The X-ray powder data for the other compounds are shown in Table V.

The saturating melamine-H₃PO₄ adducts and the corresponding invariant point solutions containing two solid phases and a few univariant points for the system $C_3H_6N_6-H_3PO_4-H_2O$ at 25 °C are given in Table VI. The data from 0-50% P₂O₅ are plotted in Figure 1, but more of the significant details between 0 and 0.9% P₂O₅ are shown in Figure 2. Two comparable analyses of each cell conducted two weeks apart confirmed that equilibrium had been obtained. Also, equilibrium was ascertained by the presence of well-developed euhedral crystals of each solid phase necessary to establish each invariant point and tie-line solution. Several duplicate samples of some invariant point compositions were obtained for additional confirmation.

Table VII lists the solid-phase identification and the saturating solution composition for the system $C_3H_6N_6-NH_3-H_3PO_4-H_2O$ at 25 °C. These data are plotted in Figure 3. Since melamine is only slightly soluble in ammonium phosphate solutions, the phase system $NH_3-H_3PO_4-H_2O$ reported by Lenfesty and Brosheer (15) serves as a boundary to establish the saturation fields for the melamine adducts.

Results and Discussion

Eleven melamine-phosphoric acid or ammonium phosphate adducts were isolated, formulated, and characterized by their unique optical and X-ray properties. Their phase relationships have been established at 25 °C. Crystal development and subsequent separation problems involved in WPA purification have been studied in other projects (3, 4, 6, 7) and can now be described in relationship to the individual solid phases involved in each process.

Figure 3 shows the chemical parameters which control the reclamation of melamine from ammonium phosphate solutions. The ammonia system contains two adducts ($5C_3H_6N_6$ · $3H_3PO_4$ · $6H_2O$ and $C_3H_6N_6$ · $NH_4H_2PO_4$ · $2H_2O$) completely surrounded by ammonium phosphate solutions; thus, these compositions will not be present in the $C_3H_6N_6$ - H_3PO_4 - H_2O system at 25 °C. The ammonium phosphate adduct has a more fundamental reason—the absence of ammonia. The shape of the isotherms in Figure 3 below 1% P₂O₅ is expected to be very

	soln compos	n, wt %		
sample no.	melamine	P_2O_5	pH	solid ph
1	0.32	0.01	6.23	C ₃ H ₆ N ₆
2	0.35	0.02	6.04	$C_3H_6N_6 + (C_3H_6N_6)$
3	0.18	0.03	5.47	(Č ₃ H ₆ N ₆) ₂ ·H ₃ PO₄·3I
4	0.16	0.07	4.39	$(C_3H_6N_6)_2 \cdot H_3PO_4 \cdot 3I_6$
5	0.15	0.12	3.54	$(C_3H_6N_6)_3 \cdot (H_3PO_4)_2$
6	0.16	0.14	3.28	$(C_3H_6N_6)_4 \cdot (H_3PO_4)_3$
7	0.22	0.63	1.95	$(C_3H_6N_6)_6 (H_3PO_4)_5$
8	0.18	1.95	1.55	C ₃ H ₆ N ₆ ·H ₃ PO ₄
9	0.18	10.01	0.93	C ₃ H ₆ N ₆ ·H ₃ PO ₄
10	3.41	41.70	0.80	$C_3H_6N_6H_3PO_4 + C$
11			0.63	$C_3H_6N_6(H_3PO_4)_2$ (H
12			0.63-0.8	C ₃ H ₆ N ₆ (H ₃ PO ₄) ₂ 61
13		59.00	<0.00	C ₃ H ₆ N ₆ ·(H ₃ PO ₄) ₄

Table VII. Phase System C₃H₆N₆-NH₃-H₃PO₄-H₂O at 25 °C

a alm a sum a sum and 0

som composit, wt 76							
	pН	NH ₃ -N	P_2O_5	Mel-N	solid phases ^a		
	9.77	4.27	3.82	0.28	Mel, TAP-3		
	8.57	8.93	21.96	0.06	Mel, TAP•3, DAP		
	7.52	8.72	22.64	0.07	Mel, DAP, Mel·MAP		
	7.38	3.77	10.15	0.18	Mel, Mel·MAP, 2:1·3		
	7.14	3.01	8.55	0.21	Mel, 2:1·3		
	7.01	2.08	5.56	0.26	Mel, 2:1·3		
	6.95	1.45	3.91	0.25	Mel, 2:1·3		
	6.09	3.86	13.29	0.04	5:3.6, 2:1.3, 3:2.4		
	6.08	2.99	10.35	0.04	3:2•4, 2:1•3		
	6.07	2.71	9.58	0.03	3:2.4, 2:1.3		
	6.06	4.71	15.82	0.03	5:3.6, 2:1.3		
	6.02	5.69	19.56	0.03	5:3•6, 2:1•3, Mel•MAP		
	6.02	9.80	34.52	0.04	Mel·MAP, MAP, DAP		
	5.74	6.75	23.75	0.02	5:3•6, 3:2•4		
	5.63	8.27	29.49	0.03	Mel·MAP, 3:2·4, MAP		
	5.60	7.98	28.48	0.02	Mel•MAP, 3:2•4, 5:3•6		
	5.56	4.41	16.86	0.03	5:3.6, 3:2.4		
	5.38	7.08	26.62	0.03	MAP, 3:2•4		
	4.92	5.42	21.89	0.04	MAP, 4:3·3, 3:2·4		
	4.63	4.50	19.72	0.03	MAP, 4:3·3		
	4.37	3.87	18.46	0.03	MAP, 4:3·3, 6:5·4		
	4.35	3.80	18.14	0.02	MAP, 4:3·3, 6:5·4		
	3.88	2.62	13.00	0.02	4:3·3, 3:2·4		
	3.78	3.21	16.06	0.02	4:3·3, 6:5·4		
	3.90	1.60	8.00	0.02	4:3·3, 3:2·4		
	3.67	1.08	5.34	0.03	4:3.3, 3:2.4		
	3.51	1.77	9 .05	0.02	6:5•4, 4:3•3		
	3.28	3.47	18.18	0.02	6:5•4, 1:1, Mel·MAP		
	2.81	1.27	7.30	0.04	6:5•4, 1:1		
	1.77	3.78	25.06	0.16	MAP, 1:1		

^a Mel = melamine, $C_3H_6N_6$; TAP·3 = (NH₄)₃PO₄·3H₂O; DAP = $(NH_4)_2HPO_4$; MAP = $NH_4H_2PO_4$; Mel-MAP = melamine- $NH_4H_2PO_4\cdot 2H_2O; 2:1\cdot 2 = 2melamine \cdot H_3PO_4\cdot 3H_2O; 3:2\cdot 4 = 3mel$ $amine \cdot 2H_3PO_4 \cdot 4H_2O; 5:3.6 = 5melamine \cdot 3H_3PO_4 \cdot 6H_2O; 4:3.3 =$ 4melamine $3H_3PO_4 \cdot 3H_2O$; $6:5 \cdot 4 = 6$ melamine $5H_3PO_4 \cdot 4H_2O$; 1:1 =melamine H₃PO₄.

complicated, somewhat similar to that in the acid system of Figure 2; i.e., the effect of a small quantity of ammonia on the isotherms of Figure 2 was not determined because the system would not be saturated with respect to ammonia and the data would not be applicable to either phase system being reported here. The basic data needed to develop a WPA purification and regeneration process are given. The solubility of melamine in the acid system at 10% P2O5 is sufficiently low to prevent a

solid phase, optical microscopy
C ₃ H ₆ N ₆
$C_3H_6N_6 + (C_3H_6N_6)_2 H_3PO_4 H_2O$
$(C_3H_6N_6)_2 H_3PO_4 H_2O$
$(C_{3}H_{6}N_{6})_{2}H_{3}PO_{4}H_{2}O + (C_{3}H_{6}N_{6})_{3}(H_{3}PO_{4})_{2}H_{2}O$
$(C_{3}H_{6}N_{6})_{3} \cdot (H_{3}PO_{4})_{2} \cdot 4H_{2}O + (C_{3}H_{6}N_{6})_{4} \cdot (H_{3}PO_{4})_{3} \cdot 3H_{2}O$
$(C_{3}H_{6}N_{6})_{4} \cdot (H_{3}PO_{4})_{3} \cdot 3H_{2}O + (C_{3}H_{6}N_{6})_{6} \cdot (H_{3}PO_{4})_{5} \cdot 4H_{2}O$
$(C_{3}H_{6}N_{6})_{6} (H_{3}PO_{4})_{5} 4H_{2}O + C_{3}H_{6}N_{6}H_{3}PO_{4}$
$C_3H_6N_6H_3PO_4$
$C_3H_6N_6H_3PO_4$
$C_{3}H_{6}N_{6}H_{3}PO_{4} + C_{3}H_{6}N_{6}(H_{3}PO_{4})_{2}$ (A)
$C_3H_6N_6(H_3PO_4)_2$ (B)
$C_3H_6N_6(H_3PO_4)_2(H_2O_3)$ (metastable)
CoHoNer(HoPOr)

Table VIII. pH versus Composition of Melamine Phosphate Adducts

pH	adduct	ratio Mel:H ₃ PO ₄
0.4-0.5	Mel·4H ₉ PO ₄	1.5:6
0.5-1.0	Mel·2H ₃ PO ₄	3:6
1.0-3.3	Mel·H ₃ PO₄	6:6
2.8 - 4.4	6Mel•5H ₃ PO ₄ •4H ₂ O	7.2:6
3.7-4.9	4Mel·3H ₃ PO ₄ ·3H ₂ O	8:6
4.9-5.6	3Mel·2H ₃ PO ₄ ·4H ₂ O	9:6
5.6 - 6.1	5Mel·3H ₃ PO ₄ ·6H ₂ O	10:6
6.1 - 7.4	2Mel·H ₃ PO ₄ ·3H ₂ O	12:6

serious loss of melamine in the byproduct sludge fraction that will be formed after the major fraction of the phosphate has been removed.

A comparative summary of the melamine-phosphoric acid adducts, along with the pH range of their stability fields, is shown in Table VIII. Other ratios may exist at other temperatures.

Registry No. H₃PO₄, 7664-38-2; NH₃, 7664-41-7; melamine, 108-78-1.

Literature Cited

- Bann, B.; Miller, S. A. Chem. Rev. 1958 58, 131-172.
 Frazler, A. W.; Gautney, J.; Cabler, J. L. Ind. Eng. Chem. Prod. Res. Dev. 1982 21, 470-473.
- Sheridan, R. C. U.S. Patent 3 920 796, Nov 18, 1975.
- (4) Kohler, J. J.; Gautney, J.; Kim, Y. K.; McCullough, J. F. U.S. Patent 4 139 597, Feb 13, 1979.
- (5) Gautney, J.; Frazier, A. W.; Kim, Y. K.; Hatfield, J. D. Ind. Eng. Chem. Prod. Res. Dev. 1982 21, 464–470.
 (6) Sheridan, R. C.; McCullough, J. F. U.S. Patent 4239739, Dec 16,
- 1980.
- McCullough, J. F.; Sheridan, R. C. U.S. Patent 4017589, Apr 12, (7) 1977.
- Volfkovic, V.S.I.; Feldmann, W.; Kozmina, M. L. Z. Anorg. Allg. (8)
- (a) Volković, V.S.1., Feldmann, W., Kozhina, M. E. Z. Anorg. Ang. Chem. 1979 457, 20–30.
 (b) Frazler, A. W.; Schelb, R. M.; Thrasher, R. D. J. Agric. Food Chem. 1972 20, 138–145.
 (10) Konishi, K.; Imaniski, A. Nippon Dojahiryagaku Zasshi 1941 15, 557-57.
- 559-574.
- (11) Scholl, W.; Davis, R. O. E.; Brown, B. E.; Reid, F. R. Ind. Eng. Chem.
- 1937 29, 202–205.
 (12) Vol'fkovich, S. I.; Zusser, E. E.; Remen, R. E. Bull. Acad. Sci. URSS, Cl. Sci. Chim. 1948, 571–579. (13) Van Wazer, J. R. Phosphorus and Its Compounds; Interscience: New
- Vali Vizzei, J. R. Prospinors and Tis Compounds, Interscience. New York, 1961; pp 997–1069.
 Winchell, A. N. The Optical Properties of Organic Compounds; Univer-sity of Wisconsin Press: Madison, WI, 1943.
 Lenfesty, F. A.; Brosheer, J. C. J. Chem. Eng. Data 1960, 5,
- 152-154.

Received for review December 8, 1987. Accepted May 31, 1988.